Чтобы сделать УЗИ, клинические ультразвуковые системы используют датчики, которые излучают и воспринимают звуковые волны в диапазоне частот от 2 до 27 МГц. Проявление картинки зависит от мощности отраженного ультразвукового сигнала и напрямую связано с углом, под которым луч проникает в акустическую среду. Ультразвуковой сигнал описывается его частотой и длиной волны. Короткая длина волны (то есть высокая частота) обеспечивает лучшее разрешение, но меньшую глубину проникновения в ткани. Следовательно, высокочастотные датчики (от 5 до 10 МГц) предоставляют наиболее высокое разрешение, но использовать их можно только для визуализации поверхностных структур. Низкочастотные датчики (от 2 до 5 МГц) обеспечивают лучшее проникновение, но имеют более низкое разрешение.
Выбор ультразвукового датчика
Выбор датчика основывается на сопоставлении возможностей самого ультразвукового датчика и потребности в отображении тех или иных структур. Помимо частоты, свойства датчика дополнительно включают размеры рабочей поверхности (площадь излучения ультразвука) и ее форму. Типичный датчик с фазированной решеткой излучает в диапазоне от 3 до 5 МГц, имеет небольшую рабочую площадь и производит широкую секторную ультразвуковую картину, отправляя пакеты ультразвуковых импульсов, которые сшиваются вместе. Изогнутые линейные датчики излучают в диапазоне от 4 до 7 МПц имеют большую рабочую поверхность и идеальны для изображения абдоминальных структур. Эти датчики генерируют расширяющуюся картину из-за расходящегося излучения ультразвуковых волн. Линейные датчики излучают в диапазоне от 10 до 27 МГц и используются для изображения поверхностных структур.
Режимы УЗИ
Акустический гель применяют, чтобы минимизировать потерю акустической мощности при переходе сигнал от датчика к коже. Стандартная 20-картинка называется В-режимом (режим яркости). В этом режиме отображается значение яркости для каждой точки каждого ультразвукового сигнала, принимаемого датчиком. М-режим (режим движения) - это графическое отображение В-режима, которое на экране в режиме реального времени развертывается линиями ультразвукового сигнала и используется для оценки движения структур вдоль ультразвукового луча. Допплерография - это режим, который используют для определения направления и интенсивности потока за счет оценки изменения скорости движения целевых структур (обычно красные кровяные клетки). Важно помнить, что допплеровские сигналы более точны, когда ультразвуковой сигнал параллелен направлению движения. В режиме цветного Допплера, допплеровский эхосигнал показывается цветом, соответствующим направлению течения. В режиме постоянно-волновой допплерографии, сумма скоростей потоков определяется вдоль всей линии ультразвукового сигнала. В режиме импульсно-волновой допплерографии имеется возможность определить скорость потока в заданной области, но с ограничением диапазона значений скоростей. Позиционирование датчика для улучшения отображения структур производится с помощью трех основных движений:
наклон по горизонтали позволяет сканировать слева направо и используется для того, чтобы располагать структуры в центре экрана;
наклон по вертикали позволяет сканировать вверх вниз;
поворот позволяет поворачивать датчик в направлении по часовой стрелке или против часовой стрелки.
Все материалы являются интеллектуальной собственностью их авторов и публикуются на сайте в ознакомительных целях. Администрация сайта не несет никакой ответственности за опубликованые материалы. Политика конфиденциальности